什么是步进电机
作者:张文娟 发布日期:2022-07-25
步进电机是一种将电脉冲信号转换成相应角位移或线位移的电动机。每输入一个脉冲信号,转子就转动一个角度或前进一步,其输出的角位移或线位移与输入的脉冲数成正比,转速与脉冲频率成正比。因此,步进电动机又称脉冲电动机。
步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。二十世纪初,步进电机广泛应用在了电话自动交换机中。由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。到了八十年代后,由于廉价的微型计算机以多功能的姿态出现,步进电机的控制方式更加灵活多样。
步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。步进电机的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。
我国的步进电机在二十世纪七十年代初开始起步,七十年代中期至八十年代中期为成品发展阶段,新品种和高性能电机不断开发,目前,随着科学技术的发展,特别是永磁材料、半导体技术、计算机技术的发展,使步进电机在众多领域得到了广泛应用。
步进电机控制技术及发展概况
作为一种控制用的特种电机,步进电机无法直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。在微电子技术,特别计算机技术发展以前,控制器(脉冲信号发生器)完全由硬件实现,控制系统采用单独的元件或者集成电路组成控制回路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。这就使得需要针对不同的电机开发不同的驱动器,开发难度和开发成本都很高,控制难度较大,限制了步进电机的推广。
由于步进电机是一个把电脉冲转换成离散的机械运动的装置,具有很好的数据控制特性,因此,计算机成为步进电机的理想驱动源,随着微电子和计算机技术的发展,软硬件结合的控制方式成为了主流,即通过程序产生控制脉冲,驱动硬件电路。单片机通过软件来控制步进电机,更好地挖掘出了电机的潜力。因此,用单片机控制步进电机已经成为了一种必然的趋势,也符合数字化的时代趋势。
主要分类
步进电动机的结构形式和分类方法较多,一般按励磁方式分为磁阻式、永磁式和混磁式三种;按相数可分为单相、两相、三相和多相等形式。
在我国所采用的步进电机中以反应式步进电机为主。步进电机的运行性能与控制方式有密切的关系,步进电机控制系统从其控制方式来看,可以分为以下三类:开环控制系统、闭环控制系统、半闭环控制系统。半闭环控制系统在实际应用中一般归类于开环或闭环系统中。
主要构造
三相磁阻式步进电动机模型的结构示意图如概述图所示。它的定、转子铁心都由硅钢片叠成。定子上有六个磁极,每两个相对的磁极绕有同一相绕组,三相绕组接成星形作为控制绕组;转子铁心上没有绕组,只有四个齿,齿宽等于定子极靴宽。 步进电机加减速过程控制技术
正因为步进电机的广泛应用,对步进电机的控制的研究也越来越多,在启动或加速时如果步进脉冲变化太快,转子由于惯性而跟随不上电信号的变化,产生堵转或失步在停止或减速时由于同样原因则可能产生超步。为防止堵转、失步和超步,提高工作频率,要对步进电机进行升降速控制。
步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步力矩而启动的,为了不发生失步,启动频率是不高的。特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差十倍之多。
步进电机的起动频率特性使步进电机启动时不能直接达到运行频率,而要有一个启动过程,即从一个低的转速逐渐升速到运行转速。停止时运行频率不能立即降为零,而要有一个高速逐渐降速到零的过程。
步进电机的输出力矩随着脉冲频率的上升而下降,启动频率越高,启动力矩就越小,带动负载的能力越差,启动时会造成失步,而在停止时又会发生过冲。要使步进电机快速的达到所要求的速度又不失步或过冲,其关键在于使加速过程中,加速度所要求的力矩既能充分利用各个运行频率下步进电机所提供的力矩,又不能超过这个力矩。因此,步进电机的运行一般要经过加速、匀速、减速三个阶段,要求加减速过程时间尽量的短,恒速时间尽量长。特别是在要求快速响应的工作中,从起点到终点运行的时间要求最短,这就必须要求加速、减速的过程最短,而恒速时的速度最高。
国内外的科技工作者对步进电机的速度控制技术进行了大量的研究,建立了多种加减速控制数学模型,如指数模型、线性模型等,并在此基础上设计开发了多种控制电路,改善了步进电机的运动特性,推广了步进电机的应用范围指数加减速考虑了步进电机固有的矩频特性,既能保证步进电机在运动中不失步,又充分发挥了电机的固有特性,缩短了升降速时间,但因电机负载的变化,很难实现而线性加减速仅考虑电机在负载能力范围的角速度与脉冲成正比这一关系,不因电源电压、负载环境的波动而变化的特性,这种升速方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步。
步进电机的细分驱动控制
步进电机由于受到自身制造工艺的限制,如步距角的大小由转子齿数和运行拍数决定,但转子齿数和运行拍数是有限的,因此步进电机的步距角一般较大并且是固定的,步进的分辨率低、缺乏灵活性、在低频运行时振动,噪音比其他微电机都高,使物理装置容易疲劳或损坏。这些缺点使步进电机只能应用在一些要求较低的场合,对要求较高的场合,只能采取闭环控制,增加了系统的复杂性,这些缺点严重限制了步进电机作为优良的开环控制组件的有效利用。细分驱动技术在一定程度上有效地克服了这些缺点。
步进电机细分驱动技术是年代中期发展起来的一种可以显著改善步进电机综合使用性能的驱动技术。年美国学者、首次在美国增量运动控制系统及器件年会上提出步进电机步距角细分的控制方法。在其后的二十多年里,步进电机细分驱动得到了很大的发展。逐步发展到上世纪九十年代完全成熟的。我国对细分驱动技术的研究,起步时间与国外相差无几。
在九十年代中期的到了较大的发展。主要应用在工业、航天、机器人、精密测量等领域,如跟踪卫星用光电经纬仪、军用仪器、通讯和雷达等设备,细分驱动技术的广泛应用,使得电机的相数不受步距角的限制,为产品设计带来了方便。目前在步进电机的细分驱动技术上,采用斩波恒流驱动,仪脉冲宽度调制驱动、电流矢量恒幅均匀旋转驱动控制止,大大提高步进电机运行运转精度,使步进电机在中、小功率应用领域向高速且精密化的方向发展。
温馨提示:本公司特别推出-步进电机,混合式步进电机,三相混合式步进电机,伺服电机,石油仪器等等产品,是专业的步进电机供应商,有意者请来电洽谈!
混合式步进电机
三相混合式步进电机特点:
·三相混合式步进电机采用特殊的结构、优良的材质和先进的制造工艺。
·三相混合式步进电机采用特殊机械加工工艺,电机定转子间气隙仅为50μm。
·三相混合式步进电机的电机转子定子直径比提高到59%,大大提高了电机的工作扭矩。
·磁极数多于五相步进电机,三相混合式步进电机的平稳性和定位精度远高于五相混合式步进电机。
热门产品关键词搜索:步进电机供应商,混合式步进电机,三相混合式步进电机,步进电机供应商报价,三相混合式步进电机报价,混合式步进电机价格,三相混合式步进电机价格